leyu新闻中心
现代电力电子技术集锦9篇
时间:2023-11-09 23:51点击量:


  现代电力电子技术集锦9篇当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经 济、实用,实现高效率和高品质用电相结合leyu体育

  现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

  大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

  七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显着而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

  进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

  高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

  计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

  通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

  因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

  DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。

  通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

  不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,

  另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。 现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

  目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

  变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

  国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

  高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

  逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合, 整流滤波后成为稳定的直流,供电弧使用。

  由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

  国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

  大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

  自从70年始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

  国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

  传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

  电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流; (2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

  分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

  八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

  分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

  在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

  理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的 5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合 闸用等各种直流电源也可以根据这一原理进行改造, 成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显着节能、节水、节约材料的经济效益,更可体现技术含量的价值。

  模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块,它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、 机械方面的设计,达到优化完美的境地。它类似于微

  电子中的用户专用集成电路。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,模块再平均分担负载电流。这样,不但提高了功率容量, 在有限的器件容量的情况下满足了大电流输出的要求, 而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。 3.3 数字化

  在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC) 问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

  电源系统的绿色化有两层含义:首先是显着节电, 这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

  将实现高品质与高效率用电作为目标的现代电力电子技术,采用电力半导体器件、电磁技术、计算机(微处理技术)、综合自动控制技术等进行功率处理,达成电能的传输、获取、变化与利用。采用电力电子半导体器件、电磁技术、计算机(微处理技术)、综合自动控制技术等多学科交叉技术的现代电源技术,是现代电力电子技术的具体应用,在保证高可靠性、高效、高质量的电源的供应中发挥着关键作用。以功率IGBT与MOSFET为代表的、集大电流、高压与高频于一体的功率报道提复合器件,将传统的电力电子技术引入了现代电力电子技术时代中。因为MOSFET、IGBT等新型的电力电子器件具有显著的节能和功能驱动作用,具有先进的性能,所以新型的电力电子器件在绿色电源、电动交通工具、新型家电、感应加热、变频调速以及通信与计算机电源等领域均有着广泛的应用前景。

  (一)高频开关整流器。具有效率高、重量轻、体积小等特点的高频开关整流器从各种仪器仪表、计算机、电视机等小功率的应用上推广到电力工程直流电源系统、通信基础电源、CT机、X光机和照明等特种电源领域。高频开关电源又可以称之为开关型整流器,其通过IGBT或MOSFET的高频工作,一般将开关频率控制子50~200KHZ的范围之内,进而实现小型化和高效率等目标。目前,高频开关整流器的功率容量一直都在增加,单模块容量从几十瓦、上百瓦快速提升到15KW。德国BENNING公司出产的Tebechop15000系列的整流模块的质量只有39KG,然而容量却已经到达了15KW(48V/225A)。TYCO公司出产的GALAXY系列的整流模块的质量只有30KG,容量却达到了12KV(48V/200A)leyu体育

  (二)直流-直流(DC/DC)变换器。直流-直流变换器能够将固定的直流电压转换成可变的直流电压,广泛地应用与电动车、无轨电车、地铁列车的无级变速与控制领域,能够实现具有快速响应、加速平稳等性能的控制,并同时达到节约电能的目的。用直流斩波器取代变阻器能够节约20%~30%的电能。直流斩波器不但可以进行调压,还能够显著地消除电网侧谐波电流噪声。在通信电源领域的二次电源直流-直流模块已经商品化,采用高频PWM技术等模块具有5~20W/in3的功率密度,500KHZ左右的开关频率。

  (三)不间断电源(UPS)。不间断电源普遍采用了功率IGBT、MOSFET等电力电子器件和脉宽调制技术,能够有效地降低电源的噪声,显著地提高可靠性与效率。DSP技术和微处理技术的实现了远程诊断、远程维护以及不间断电源的智能化管理。近年来,不间断电源的最大容量已经高达800KVA,而且能够利用多机并联的方式,获得超大容量的不间断电源系统。

  (四)大功率开关型高压直流电源。大功率开关型高压直流电源的电流能够达到0.5A以上,电压能够达到50KV~159KV,电流能够达到100KV。大功率开关型高压直流电源在医用CT机、医用X光机、水质改良和静电除尘等大型设备上有着广泛的应用。国内研制了静电除尘高压直流电源,将市电转化成直流,将直流电压逆变成高频电压,通过高频变压器进行升压,接着整流成直流高压。通常,在电阻负载的情况下,输出直流电流可达15mA,直流电压能够达到55KV,工作频率是25.6KHZ。

  (五)高压直流输电系统。适合于大容量输电、远距离输电、跨海输电、大区交流电网互联的直流输电方式是除了交流输电方式外的另一种有效的输电方式。直流输电需要安装换流桥阀和换交流变压器等主要的换流设备,需要在受电端和送电端建设换流站,以解决交流电和直流电之间的转换问题。在送电端换流站安装使用电力电子装置将交流电转换为直流电,使用直流输电线路将直流电输送到受电端换流站。安装使用电力电子装置在受电端换流站将直流电逆变为交流电。

  (六)电力有源滤波器。电力有源滤波器能够对幅值与频率变化的谐波进行补偿的电力电子装置,其基本原理为在补偿对象中进行谐波电流检测,再由补偿装置产生一个和谐波电流极性相反、电流大小相等的补偿电流,使电网电流只含有基波分量。电力有源滤波器在补偿时不受电网阻抗的干扰,已经左键在国内推广使用。

  (七)静止无功功率补偿装置(SVC)。目前,国内最有效的无功补偿装置是静止无功补偿装置。静止无功补偿装置一般使用晶闸管控制电抗器加固定电容器的方式,能够进行补偿装置无功功率的连续调节。目前,静止无功补偿装置主要运用与轧机、电弧炉等设备的无功补偿当中,容量能够到达±50VA,能够直接用于10KV、35KV等级的电压母线。

  近年来,电力电子技术的发展具有以下特点:不断地提高原有的各种类型的电力电子器件的额定参数;电力电子技术进一步结合用用微电子技术,电力电子器件不断地朝着智能化、大容量的方向迅速发展,电力电子技术从全控型器件、半控型器件时代迈入了智能型器件时代。与多种学科相互渗透的电力电子技术创新不断渗透到多种相关的工业领域。电力电子技术和国家基础产业的关系也越来越密切,电力电子技术的发展和创新是可持续发展的重要环节。加强现代电力电子技术的不断创新和应用力度,是推动我国工业领域技术创新,形成高科技产业链的必由之路。

  电力电子技术是利用电力电子元件对电能进行控制和转换的学科。电力电子技术已经与其他技术相结合成为一门交叉的科学,它经历了三个阶段:整流器时期、逆变器时期、变频器时期,随着电力电子器件和技术的更新,使得其在很多领域都得到应用。

  随着美国通用电气研制了第一个工业用的晶闸管,从而开启了整流器时代。上个世纪50年代工业用电基本上是50HZ的交流电,但是像电解、牵引、直流传动都需要直流电提供动力,于是基于晶闸管基础上的硅整流器就应运而生了,它能把工频交流电转化为直流电,极大的促进了工业的发展。

  由于20世纪70年代出现了世界性的能源危机,晶闸管作为半控型器件,不能自动断开,因此也不能适应企业的需要。交流电机变频调速因节能效果显著而迅速发展,这些自开断的全控型器件也得到了极大的发展,但是由于技术限制,发展也有限。

  在八十年代随着电力电子技术的发展,大规模和超大规模的集成电路的发展标志着现代电力电子时代的来临,其中以MOSFET和IGBT为代表。它们的出现使得电频从低频向高频转化,同时也使设备向小、轻等方面发展。

  现代电力电子技术的研究核心任然是电源技术leyu,目前现代电力电子技术正向规模化和集成化发展;现代电力电子技术正从低频向高频发展;现代电力电子技术向全控化和数字化转变;现代电力电子技术正向着绿色化转变。

  目前我国政府和企业都在强调创新的作用,现代电力电子技术的发展使得其与多个领域的科学相结合,其发展创新将会惠及多个领域,目前现代电力电子技术也是向着智能化和绿色化的方面去发展。这样的发展不仅能够为我国工业发展提高效率而且能够带来环境方面的保护。

  开关电源的前身是线性稳压电源。电源的种类按照不同的分类标准来看,主要有以下几种:按输入-输出分为AC-AC、AC-C、DC-C、DC-C;按同负载连接稳压方式分为串联型稳压电源、并联型稳压电源;按工作状态分为线性电源、开关电源、二极管稳压电源。在我们生活中,大多数电子装置、电气控制设备的工作电源是直流电源。随着计算机等电子装备的集成度的增加,体积越来越小而功率却越来越大来取代了体积庞大的线性电源开关。新型的电力电子技术给电源开关的发展提供了物质基础,20世纪60年代末,高耐压、大电流的双极型电力晶体管的出现,使得采用高工作频率的开关电源得以问世。

  开关频率的提高有利于开关电源的体积减小、重量减轻。最早期的开关频率仅仅是几千赫兹随着电力电子技术的发展开关的频率逐渐提高,当频率达到10kHz左右时,变压器、电感等磁性元件发出很刺耳的噪声。为了降低噪声,科研人员不断研发最终使得开关频率突破了人耳听觉极限的20kHz,随着电力MOSFET的应用,开关电源和开关频率进一步提高,使得电源体积更小leyu官网,重量更轻,功率密度进一步提高。IGBT可以看成是MOSFET和GTR复合而成的器件。IGBT的出现,使得开关电源的容量不断增大。另外,为了解决开关频率的提高也使得电源的电磁干扰问题,20世纪80年代出现了采用准谐振技术的零电压开关电路和零电流开关电路,这种电路利用以谐振为主的辅助换流手段,使开关开通或关断前的电压、电流分别为零,解决了电路中的开关损耗和开关噪声问题,使开关频率可以大幅度提高,从而,使开关电源进一步向体积小、重量轻、效率高、功率密度大的方向发展。电力电子技术随着需要会不断的向前发展和创新,新的产品会不断的更新换代去适应企业的发展需求,目前无论是国外还是国内都有极大的需求量,而电源技术会不断向高频、小体积方面发展。

  计算机能够为人类的工作生活带来方便,但是过去计算机的体积庞大,在八十年代,计算机率先采用了电源开关,促使更多的电子设备采用电源开关。计算机换取了电源开关之后,为省电、环保方面做出了贡献。

  通信业的快速发展促使电源行业的快速发展,目前频率高体积小的电源是通信业的主流。通信设备中所用的集成电路种类繁多,电源电压要根据不同的情况使用有所不同,在 通 信 供 电 系 统 中 采 用 高 功 率 密 度 的 高 频 DC-DC隔离电源模块可以减小损耗、方便维护和安装。

  DC/DC 变化器可以将固定的直流电压转变为可变的直流电压,可以再无轨电车、地铁等行业进行应用,可以使的加速平稳,得到快速的响应,别且能够节约电能。同时 DC/DC二次电源已近商品化,一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

  不间断电源(UPS)是计算机 、通信系统以及要求提供不 能中断场合所必须的一种高可靠、高性能的电源。现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,微处理器软硬件技术的引入使得其实现了对UPS的智能化管理。

  变频器电源主要用于交流电机的变频的调速,随着日本东芝的将这种技术应用于空调技术中,国内90年始应用这种变频技术,极大的节省了电能。

  高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于电焊机工作环境恶劣,电焊机频繁的出现一些问题,高频逆变式整流焊机电源的出现解决了常出现的问题,提高了焊机工作的可靠性。

  本文笔者通过分析电力电子的发展和电源技术的发展及电力电子技术在电源领域的应用,来揭示未来电力电子的发展趋势,鼓励更多的科研人员能够敢于想象,发挥自己的创造力研发出更多适合工业和能源需求的电源。

  [1]韦和平. 现代电力电子及电源技术的发展[J]. 现代电子技术,2005,18:102-105.

  [3]纪圣勇.现代电力电子及电源技术的发展[J].安徽电子信息职业技术学院学报,2006,03:98-100.

  电力电子技术的发展历程可具体划分为三个时期,即整流器时代、逆变器时代和变频器时代。首先,整流器时期的电力电子技术发展主要表现为大规模的工业用电,它的用电来源主要是交流发电机,消费形式以直流电为主,比如有色金属的电解、内燃机车的牵引以及轧钢中的直流电等。硅整流器通过将直流电转化为工业用电而被广泛应用于配电和输电领域,这在六七十年代的中国随处可见。其次,逆变器时代的电力电子技术发展遭遇了严重的能源危机,其波及范围之广使得整流器的发展不再适应电能企业的使用需求,以交流电为主的逆变器时代应运而生。逆变器时代以晶闸管、晶体管以及晶闸管器件作为时展的主流,在高压直流输出的过程中实现了对动态功率的有效补偿。然而这时的使用范围还仅仅局限于中低频领域,使用过程中的效率较为偏低。再者,八十年代的变频器时代实现了大规模和超大规模集成电路的发展与应用,这不仅电子应用领域的显著创新leyu,同时也为后期现代电力电子技术的发展提供了必要的技术借鉴。变频器时代还对电力的精细加工技术进行了完善,全控型功率器件的出现实现了电力电子技术的高频化发展,使得现代电力电子技术转化成为一种可能。功率半导体市场逐渐被变频器件取代,这一革新不仅提升了变频调速的使用频率,在小型轻量化技术装备方面也有了显著进步。

  电力电子技术的发展核心控制体系在于电能器件的有效转换,作为一种现代技术,电力电子技术的主要功能不仅包括了逆变、整流、变频等基本方面,除此以外还涉及到斩波和智能开关等方面的内容。通过对电网工频电能的转化来达到不同的使用目的,以此适应现代化生产对电力电子技术的使用需求。具体应用方面,其应用领域主要包括了三大方面:其一,在变频器作用下对微电子技术及控制技术进行有效整合,将固有不变的交流电转变为可换可调的可变式交流电,以此达到无级调速的目的,这对电能资源的节约显然极为有利。其二,在开关电源和供电电源方面现代电力电子技术也有着自身的使用功能,类似变频电源、焊接电源、充电电源、照明电源等都为现代化电力系统的完善提供了切实可行的技术指导。其三,一些发电系统或是交流输电技术也体现出现代电力电子技术的应用意义,水力发电、风力发电、配电与用电系统的完善等都和电子系统的应用之间有着密切联系。

  电子电子技术归根结底是对电源技术的研究,电源技术不仅是电力电子技术研究的核心,一定程度上开光电源技术的发展也预示着现代电力电子技术今后的发展走向。从发展趋势来看,现代电力电子技术的发展趋势可概括为以下几方面特点:第一,现代电力电子技术的集成化与模块化特征。这一特征主要表现在现代电力电子技术的功率器件和电源单元两个方面,从微小器件组成来实现电子器件的智能化辨别与使用。这样的模块功率不仅有效控制了器件的体积,在设计与制造方面也形成了显著的模块化特征。电力电子技术的模块化发展其核心目的旨在降低器件的电应力,从安全性与可靠性角度提升电力系统的使用性能。第二,现代电力电子技术的高频化特征。从理论分析及实践验证的双重角度不难看出,无论是变压器的电感还是电容体积在供电频率方面都呈现出一定的反比例趋势,因此体积的减小必然会导致电子技术的高频化呈现。从这个角度来看,全控型电子器件的问世已然标志着现代电子与电力技术率先实现了自身的高频化转换。第三,现代电力电子技术的全控化与数字化特征。全控化电力电子技术的革新突破了原有电力电子器件在使用功能方面的限制,降低了关断换流电路可能造成的危险,从根本上保障了电力系统在使用过程中的安全性。数字化特征则主要表现在现代电力电子技术的高频斩波以及谐振变换等方面,从弱电领域拓展了电力电子技术的发展渠道,提前实现了控制技术的集成化。第四,现代电力电子技术的绿色化特征。这里的绿色化特征既包括了环境污染问题的控制,又涉及到必要的电网污染源问题,是当前电力电子技术在发展过程中亟需解决的重要问题。发电容量的控制从根本上减少了发电对环境造成的污染,与此相关的污染过滤器或是电能补偿系统等都是当前电力电子技术向绿色化迈进的有力证据。具体的电力电子技术应用方面,则主要表现为四大革新趋势:其一,太阳能发电技术的应用。太阳能发电技术为普通家庭提供了足够的电能使用空间,成为了可再生资源的有效传播途径之一。其二,燃料电池发电技术。燃料电池的发电装置主要是将其中的化学能转化为可使用的电能,节能省电,鲜少产生环境污染问题。其三,交流输电技术的应用。作为一种新型电力系统出现的交流输电技术实现了对电网资源重新分配与利用,保障了电力系统的稳定性。其四,现代电力电子技术中的储存与质量控制技术。储存技术的使用在于提升电力系统本身的电力储备功能,而质量控制技术则在于从供电质量角度提高电力产品的使用效率。

  关于现代电力电子技术的应用展望,可从如下几方面得以体现:第一,从节能性角度提升电机系统的使用性能,可从专用电机的设计或是控制设备的完善等方面来提升整体电力系统的使用效率;第二,中高压直流输电系统的运用也是今后电力电子技术发展的必然趋势,这一系统本身就具备了低污染和低能耗的特点;第三,当前社会发展进程中充电站网络的构建或是电动车辆的普及已经逐渐成为现代电力电子技术发展进程中积极完善与改革的内容,以电动汽车为代表的环保电力问题逐渐成为一个时代课题。至于当前城市建设过程中充电网络的配备问题基本尚处于起步阶段,无论是实际应用领域还是理论构建领域都还存在许多值得研究和讨论的问题,但无疑其发展空间是极为广阔的;第四,关于电力系统中电能储备装置的设置与超导线的使用也将成为电力电子技术亟需解决的问题之一,从根本上解决电能储备问题势必将对电力系统的持续发展产生积极而深远的影响。然而面对电能储备过程中存在的诸多问题,电力系统设计者需要从控制技术与存储技术的双重层面来体现储能装置的有效性,对于其中可能存在的不合理问题提出切实有效的解决或改进对策。

  现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

  大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

  七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

  进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

  工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝leyu官方网站、电解食盐水等都需要大容量整流电源。电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。

  电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。3、电力系统

  电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变流装置。近年发展起来的柔流输电(FACTS)也是依靠电力电子装置才得以实现的。无功补偿和谐波抑制对电力系统有重要的意义。晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)都是重要的无功补偿装置。近年来出现的静止无功发生器(SVG)、有源电力滤波器(APF)等新型电力电子装置具有更为优越的无功功率和谐波补偿的性能。在配电网系统,电力电子装置还可用于防止电网瞬时停电、瞬时电压跌落、闪变等,以进行电能质量控制,改善供电质量。

  各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。

  照明在家用电器中占有十分突出的地位。由于电力电子照明电源体积小、发光效率高、可节省大量能源,通常被称为“节能灯”,它正在逐步取代传统的白炽灯和日光灯。变频空调器是家用电器中应用电力电子技术的典型例子。电视机、音响设备、家用计算机等电子设备的电源部分也都需要电力电子技术。此外,有些洗衣机、电冰箱、微波炉等电器也应用了电力电子技术。电力电子技术广泛用于家用电器使得它和我们的生活变得十分贴近。

  近年来,我国经济发展不断加快, 以计算机信息技术为核心的电子信息工程已成为我国当前社会发展的主要力量,在社会的各个领域中扮演着重要的角色。在这个竞争激烈的社会环境下,我国电子信息工程要想稳定发展,就必须用发展的眼光,注重现代化技术的发展。本文就我国电子信息工程的现代化技术进行了相关的分析。

  电子信息工程作为我国现代化社会发展的重要内容,为了满足我国当代电子信息工程发展的需求,就必须加大现代化技术的研究。然而,我国科技发展水平还不够高,电子信息工程的现代化技术还不够成熟,进而影响到了我国电子信息工程的发展。为此,在当今社会发展形势下,加快现代化技术的发展,对推动我国电子信息工程的发展有着重大意义。

  电子信息工程作为我国现代社会发展中不可或缺的一部分,它主要是应用计算机等现代化技术进行电子信息控制和信息处理的学科。电子信息工程专业是集现代电子技术、信息技术、通信技术于一体的专业。随着我国社会的进步与发展, 社会对信息的处理、控制等方面的需求越来越大,而电子信息工程作为一门专门研究信息处理、控制的学科,能够有效地推动我国社会的进步与发展。电子信息工程现代化技术是以计算机为核心的应用技术,它结合了当代计算机网络技术,代表着先进生产力发展方向,符合我国当代社会发展趋势。随着科技的不断进步与发展,信息网络化、数字化、智能化发展已成为时展的必然,而电子信息工程的现代化技术通过对信息的有效处理和相关控制,很大程度上推动了社会智能化的发展。同时,电子信息技术的应用推动了新产品的开发研究,推动了电子产业技术的不断发展,也推动了电子产业链的整合分化,从而带动了更多的新兴产业的产生发展。为此,电子信息工程的现代化技术在我国当前社会发展过程中有着不可替代的作用。

  就我国当前社会发展形势而言,经济、科技水平还不够发达,电子信息工程现代化技术与国外相比,还存在较大的差距,很难满足我国当代社会发展的需求。在这就是我国市场经济体制还不够完善, 人们对电子信息工程技术的认识还停留在初级阶段,进而影响到了我国电子信息工程现代化技术的发展。人们对现代化技术的认识不足在很大程度上就会制约着电子信息工程现代化技术的发展,对其进行排斥。社会在进步,时代在发展,在这个竞争不断激烈的市场环境下,优胜劣汰是市场竞争的必然结果,只有掌握了先进的现代化技术,才能更好地提高自身的综合实力leyu官网,进而在竞争中利于不败之地。

  随着电子信息工程现代化技术的发展,其应用也越来越广泛。电子信息工程现代化技术代表着先进生产力的发展要求,为我国当前社会创造了大量的价值。然而,就我国当前电子信息工程现代化技术而言,专业技术人才比较匮乏,严重制约了我国电子信息工程现代化技术的发展。首先,电子信息工程现代化技术包括了多个方面,其对全能型的技术人才需求非常迫切,而我国当前的技术人才都是针对某个专业、某个方面的专业技术人才, 全方面、复合型、多用型的人才比较少,进而不利于我国电子信息工程现代化技术的发展。其次,我国人才素质普遍偏低,进而严重影响到了我国现代化技术的发展。

  在这个竞争激烈的市场环境下,电子信息工程现代化技术代表着先进生产力额发展要求,利用电子信息工程现代化技术不仅能为企业带来经济效益,同时也能我国社会的发展创造价值。然而,我国市场经济体制还不够完善,对市场的监管力度还不够严格,以至于电子市场秩序混乱,一些不合法、非正当的竞争行为此起彼伏,严重影响到了我国电子信息工程现代化技术的发展。

  先进的科学技术代表着先进生产力的发展方向,就我国当前电子信息工程现代化技术而言,其起步晚,与西方国家相比,有着较大的差距。为了更好地满足我国当代社会发展的需求,促进我国电子信息工程的发展,立足我国国情,加大自主创新,进而为电子信息工程现代化技术的发展创造条件。同时,我国还必须坚持贯彻对外开放政策,加强与世界发达国家的交流,学习西方国家先进的技术leyu,并应用于发展我国电子信息工程现代技术,促进我国电子信息工程现代化技术的发展。

  首先,电子信息工程涉及到的专业比较多,对复合型、全面型人才的需求比较迫切,在当今社会发展形势下,社会竞争已经演变为科技与人才之间的较量,我国电子信息工程现代化技术要想更好的发展,就必须重视人才的作用,加大专业技术人才的培养。针对我国电子信息工程现代化技术人才,不仅要有着专业的技术知识,同时还要有强烈的责任意识和道德素质。作为政府,必须加大资金投入,为我国电子信息工程现代化技术人才的培养提供条件。作为企业,必须加强企业内部人才的培养,注重专业技能和专业知识的培训,有条件的还可以以安排出国深造,进而促进电子信息工程现代化技术的发展。

  电子信息工程现代化技术的发展需要依靠一个稳定、健康的环境。然而在我国,市场经济体制还不够完善,市场竞争日益激烈,一些不正当的竞争行为严重破坏了我国电子信息工程现代化技术发展的市场秩序,为了更好地促进我国电子信息工程现代化技术的发展,作为政府,就必须落实各项法律法规,加大政府的宏观调控职能,规范市场行为,完善市场环境, 对市场上不合法、不正当的竞争行为进行严厉打击,进而保障我国电子信息工程现代化技术的市场秩序,保证电子信息工程现代化技术的环境资源。

  在我国当前社会发展形势下,电子信息工程现代化技术有着不可替代的作用, 电子信息工程现代化技术的发展不仅关系到我国电子信息工程的发展,更影响着我国社会的进步。为了在这个竞争激烈的市场环境下生存下去,我国电子信息工程现代化技术就必须用发展的眼光看问题, 意识到自身的不足,进而采取相应的措施,促进现代化技术的发展。

  [2] 罗秋实. 电子信息工程的现代化技术探讨[J]. 电子技术与软件工程,2014,05:238.

  [3] 张春艳. 电子信息工程的现代化技术研究分析[J]. 电子技术与软件工程,2014,03:134.

  当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

  现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

  大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

  七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

  进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

  电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。现已成为现代电气工程与自动化专业不可缺少的一部分。

  电力电子学(Power Electronics)这一名称是在上世纪60年代出现的。1974年,美国的W.Newell用一个倒三角形(如图)对电力电子学进行了描述,认为它是由电力学、电子学和控制理论三个学科交叉而形成的。这一观点被全世界普遍接受。“电力电子学”和“电力电子技术”是分别从学术和工程技术2个不同的角度来称呼的。

  利用电力电子器件实现工业规模电能变换的技术,有时也称为功率电子技术。一般情况下,它是将一种形式的工业电能转换成另一种形式的工业电能。例如,将交流电能变换成直流电能或将直流电能变换成交流电能;将工频电源变换为设备所需频率的电源;在正常交流电源中断时,用逆变器(见电力变流器)将蓄电池的直流电能变换成工频交流电能。应用电力电子技术还能实现非电能与电能之间的转换。例如,利用太阳电池将太阳辐射能转换成电能。与电子技术不同,电力电子技术变换的电能是作为能源而不是作为信息传感的载体。因此人们关注的是所能转换的电功率。

  电力电子技术是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。近代新型电力电子器件中大量应用了微电子学的技术。电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及电路。利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。这些装置常与负载、配套设备等组成一个系统。电子学、电工学、自动控制、信号检测处理等技术常在这些装置及其系统中大量应用。

  1、优化电能使用。通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现了电能使用最佳化。例如,在节电方面,针对风机水泵、电力牵引、轧机冶炼、轻工造纸、工业窑炉、感应加热、电焊、化工、电解等14个方面的调查,潜在节电总量相当于1990年全国发电量的16%,所以推广应用电力电子技术是节能的一项战略措施,一般节能效果可达10%-40%,我国已将许多装置列入节能的推广应用项目。

  2、改造传统产业和发展机电一体化等新兴产业。据发达国家预测,今后将有95%的电能要经电力电子技术处理后再使用,即工业和民用的各种机电设备中,有95%与电力电子产业有关,特别是,电力电子技术是弱电控制强电的媒体,是机电设备与计算机之间的重要接口,它为传统产业和新兴产业采用微电子技术创造了条件,成为发挥计算机作用的保证和基础。

  3、电力电子技术高频化和变频技术的发展,将使机电设备突破工频传统,向高频化方向发展。实现最佳工作效率,将使机电设备的体积减小几倍、几十倍,响应速度达到高速化,并能适应任何基准信号,实现无噪音且具有全新的功能和用途。

  4、电力电子智能化的进展,在一定程度上将信息处理与功率处理合一,使微电子技术与电力电子技术一体化,其发展有可能引起电子技术的重大改革。有人甚至提出,电子学的下一项将发生在以工业设备和电网为对象的电子技术应用领域,电力电子技术将把人们带到第二次电子的边缘。

  02年出现了第一个玻璃的汞弧整流器。1910年出现了铁壳汞弧整流器。用汞弧整流器代替机械式开关和换流器,这是电力电子技术的发端。1920年试制出氧化铜整流器,1923年出现了硒整流器。30年代,这些整流器开始大量用于电力整流装置中。20世纪40年代末出现了晶体管。20世纪50年代初,晶体管向大功率化发展,同时用半导体单晶材料制成的大功率二极管也得到发展。1954年,瑞典通用电机公司(ASEA公司)首先将汞弧管用于高压整流和逆变,并在±100千伏直流输电线年,美国人J.莫尔制成晶闸管雏型。1957年,美国人R.A.约克制成实用的晶闸管。50年代末晶闸管被用于电力电子装置,60年代以来得到迅速推广,并开发出一系列派生器件,拓展了电力电子技术的应用领域。 电力电子电路 随着晶闸管应用的推广,开发出许多电力电子电路。

  4、将一种形式的直流电能转换成另一种形式的直流电能的直流变换电路。这些电路都包含晶闸管,而每个晶闸管都需要相应的触发器。于是配合这些电力电子电路出现了许多的触发控制电路。

  2、由集成电路组成。自从1958年美国出现了世界上第一个集成电路以来,发展异常迅速。它应用到电力电子装置的控制电路中,使其结构紧凑,功能和可靠性得到提高。

  随着科学技术的不断发展以及科学技术与信息的有效融合,传统条件下的通信体系已经不能完全有效适应社会发展的需要。在高科技技术条件下所形成的电子化系统,包括雷达、导航、通信、光电等,已经完全渗透到社会发展的各个角落,且具备的高精度、高密度等特点,覆盖了微波、毫米波、紫外、红外等几乎所有的电磁频谱。而且随着社会对电子技术的需求不断提高,电子技术也获得了长足的发展。其中电子技术应用于医学领域,很大程度上推动了医学的深入与可持续发展。

  电子工程现代化作为业务与产业融合的分化整体,涉及到多行业的交叉发展,随着经济时代的到来,电子工程现代化技术的发展也进入到一个全新的时代。作为新时期内发展起来的一项技术,电子工程的现代化已经融入到我们的日常生活中,为经济的发展提供了有力的支持。电子工程是以计算机网络技术作为基本载体,对信息进行系统的控制和处理,并且逐渐形成产业链分化,电子信息技术的多行业交叉也开始出现,并且很大程度上带动了新兴产业的发展。电子工程的发展前景十分广阔,以计算机技术和微电子器件作为依托,主要负责集合电路和信息的处理等相关应用,因此,在未来,电子工程极有可能是我国提高综合国力和科技力量的重要基础性工程。在电子工程现代化过程中,其特征主要是获得信息和处理信息,并且对信息系统进行运用和集成,这种融合和整合的趋势越来越明显,并且逐渐开始壮大电子信息行业,缩小了行业间的距离。电子工程作为一门独立的学科,涉及到电子工程系统的应用开发、电子设备和信息处理等有关内容,电子工程看似离人们的生活很远,但是实际上电子工程已经涉及到人们生活的方方面面,因此为了更好地推动工程技术的发展,必须要适当加强相关的探索。当前的电子工程现代化主要是在经济领域应用较多,并且也逐渐形成了新的经济动力,对于保障,提高我国的综合国力有着重要的作用,因此也得到了国家的大力支持。

  通过多年的创新与发展,电子工程已经得到了很大的进步和完善,其更新周期也大大地缩减,电子工程理论体系也逐渐健全完善。作为时展的产物,电子工程逐渐受到我国政策的大力支持,其开发应用大大提高了相关产业的生产效率,并且在某些方面也为产品的开发提供了关键作用,对相关产业的经济结构整合重组起到了促进作用。我国在电子工程上投入了大量的人才和技术,对于计算机系统和电子产品的开发越来越重视,让电子工程在很多领域都得到了开发和利用,因而很多产业之间的界限得到明显弱化,并且逐渐实现业务的融合和产业链的分化,为经济发展做出了巨大的贡献。在未来的发展中,电子工程现代化必然会更加受到重视,并且为了能够更好地推动工程的发展,为全社会进行服务,会逐渐形成产业链条式的发展,让我国电子工程技术得到真正的发展。

  (1)创造良好的环境。为了给电子工程发展提供稳定的市场环境,国家需要高度重视对市场政策的制定和控制,将技术投入作为开发政策的有力手段,并且要适时地调整政策,抓紧发展的契机。国家还要对电子工程的作用进行普及,加大开发奖励力度,拓宽融资渠道,并且在银行等多方面对电子工程进行支持,充分调动企业研发和应用新技术的积极性。国家还要保障对电子工程市场的秩序加以稳定,建立起科学的电子工程规则秩序,对市场加以控制,保证电子行业的稳定运行。在电子工程产业中,还需要加强技术支持,不断完善政策,引导现代化技术发展和应用,并且在市场的技术开发中能够加以综合利用。在三网融合政策的推进下,国家还要在原有基础上加大对电子工程的支持,有针对性地培养符合技术需求的全能型人才,保证人力资源的充足。国家在电子工程方面还需要加大知识产权的保护力度,突破关键技术,建立起可集成的电路产业体系,并且加强对自主开发和创新机制,使得企业的知识产权意识得到加强,电子产业能够得到有效提高。

  (2)重视人才的培养力度。无论是哪个行业,人才都是十分重要的,对于推动技术发展有着重要作用,在电子工程行业,当前市场极度缺乏创新型人才,并且出现了技术更新缩短的情况,因此企业需要电子工程现代化的综合型人才来对资源进行转变和调整。企业除了对人才的搜寻外,还要加强对人才的培训力度,对已有人才进行创新,培养出一批创新型人才,提高员工的学习能力、接受能力、研发能力和自我调整能力等,这有利于以技术为业务展开的企业进行市场扩展。企业需要根据人才的不同特点给予他们相应的发展平台,让人的才能能够得到充分发展。

  (3)拓宽电子工程的发展领域。在电子工程与项目进行融合的过程中,现代化进程也在不断加快,但是由于市场需求的不同,电子工程也逐渐衍化出不同的种类,使得大众生活逐渐走向了技术化道路。然而在世界市场的冲击下,各国企业都在寻找自身发展的出路,推动电子工程信息化应用是十分必要的。企业需要认清自身发展的方向,在保持自身特色和发展稳定的基础上,不断开拓新的领域,根据政府推出的相关政策和措施,做好电子工程现代化技术的改造,结合自身状况进行综合考虑,不断深入电子工程技术的未来发展模式,力争在最短的时间内取得突破。

  总之,在信息技术迅猛发展的时代,电子技术要充分发挥在人们生活中的作用,以计算机微电子器件作为依托,掌握好电子工程的发展轨迹,使其与国际接轨,增强我国的科技力量。作为我国经济发展的一个重要增长点,电子工程现代化对于发展国民经济有着重要的推动作用,因此电子工程需要在政策的指引下,综合发挥各方面力量,促进我国综合国力的提高和进步,争取在最短的时间内与国际接轨,在电子工程现代化技术中能够取得突破发展。?